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Abstract
Dirac’s operator and Maxwell’s equations in vacuum are derived in the algebra
of split octonions. The approximations which lead to classical Maxwell–
Heaviside equations from full octonionic equations are given. The non-
existence of magnetic monopoles in classical electrodynamics is connected
with the use of the associativity limit.

PACS numbers: 03.50.De, 02.10.De, 03.30.+p

1. Introduction

Maxwell’s equations, which harbour many beautiful mathematical concepts, have been
expressed in many forms since their discovery in 1873. Maxwell himself in his main book used
the coordinate calculus [1]; however in the second edition he also included the quaternionic
representation. The original equations were a system of 16 equations, quaternionic and the
familiar vector forms consist of four equations, and the application of bi-quaternions (or
Clifford algebras) results in a version of just one equation [2]. The octonionic form of
Maxwell’s equation is still absent in the literature. It was already mentioned that the vector
algebra and Maxwell’s equations should have connections with octonions [3]. In this paper,
we want to show that in some approximation classical Maxwell–Heaviside equations can be
written as the single continuity equation in the algebra of split octonions over the reals.

Octonions form the widest normed algebra after the algebras of real numbers, complex
numbers and quaternions [4]. Since their discovery, almost three decades before Maxwell’s
equations, there have been various attempts to find appropriate uses for octonions in
physics (see reviews [5]). One can point to the possible impact of octonions on colour
symmetry [6], GUTs [7], representation of Clifford algebras [8], quantum mechanics [9],
spacetime symmetries [10], field theory [11], formulations of wave equations [12], quantum
Hall effect [13], strings and M-theory [14], etc.

In our previous papers [15], the model where the geometry of real world was described
by the split octonions was introduced. In [16], the octonionic version of Dirac’s equation was
formulated. In this paper, except the derivation of octonionic Maxwell’s equations in vacuum,
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we want to show that the symbolic form of Dirac’s equations is just the result of the invariance
of the intervals in the octonionic geometry.

2. Octonionic geometry

In [15], real physical signals were associated with the elements of split octonions,

s = ct + Jnx
n + jnh̄λn + Ich̄ω (n = 1, 2, 3), (1)

where summing by the repeated indices is performed. In (1), the scalar unit is denoted as 1, the
three vector-like objects as Jn, the three pseudo-vectors as jn and the pseudo-scalar as I. The
eight real parameters that multiply the basis units denote the time t, the special coordinates xn

and some quantities λn and ω with the dimensions of momentum−1 and energy−1, respectively.
The line element (1) also contains two fundamental constants of physics—the velocity of light
c and Planck’s constant h̄. The appearance of these constants was connected with the existence
of two different classes of zero divisors in the algebra of split octonions [15].

The algebra of the basis elements of split octonions can be written in the form

J 2
n = −j 2

n = I 2 = 1, Jnjm = −jmJn = −εnmkJ
k,

JnJm = −JmJn = jnjm = −jmjn = εnmkj
k,

JnI = −IJn = jn, jnI = −Ijn = Jn,

(2)

where εnmk is the fully antisymmetric tensor and n,m, k = 1, 2, 3. From these formulae, it is
clear that to generate a complete eight-dimensional basis of split octonions the multiplication
and distribution laws of only the three vector-like elements Jn are enough. The other two units
jn and I can be expressed as binary and triple products

jn = 1
2εnmkJ

mJ k, I = Jnjn (3)

(there is no summing in the second formula).
Using the conjugation rules of octonionic basis units

1∗ = 1, J ∗
n = −Jn, j ∗

n = −jn, I ∗ = −I, (4)

one can find that the norm of (1) (interval)

s2 = ss∗ = c2t2 − xnx
n + h̄2λnλ

n − c2h̄2ω2 (5)

has a (4 + 4)-signature and in general is not positively defined. However, as in the standard
relativity we require

s2 � 0. (6)

In the classical limit h̄ → 0, expression (5) reduces to the ordinary four-dimensional formula
for spacetime intervals.

Differentiating (1) by the proper time τ , the proper velocity of a particle can be obtained:

ds

dτ
= dt

dτ

[
c

(
1 + Ih̄

dω

dt

)
+ Jn

(
dxn

dt
+ Ih̄

dλn

dt

)]
. (7)

Then the invariance of the norm (5) gives the relation

β = dτ

dt
=

√√√√[
1 − h̄2

(
dω

dt

)2
]

− v2

c2

[
1 − h̄2

(
dλn

dxn

)2
]
, (8)

where

vn = dxn

dt
(9)
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is the 3-velocity. So the modified Lorentz factor (8) contains extra terms and the dispersion
relation in the (4 + 4)-space (5) has a form similar to that of double-special relativity
models [17].

3. Symbolic form of Dirac’s Equation

In [16], the octonionic form of Dirac’s equation, which in some limit is equivalent to the
standard one, was obtained. Here we want to demonstrate a simple derivation of Dirac’s
operator from the condition of invariance of the octonionic interval (5).

For the observers with the time parameters τ and t, we can write the relation

ds = ±c dτ = ±c dt β, (10)

where β is expressed by (8). Dividing this relation by dτ and multiplying it by the particle
mass m, we find

1

β

[
mc

(
1 + Ih̄

dω

dt

)
+ Jnm

(
vn + Ih̄

dλn

dt

)]
= ±cm. (11)

Let us assume that
mch̄

β

dω

dt
= −e

c
ϕ,

mh̄

β

dλn

dt
= −e

c
An, (12)

where ϕ and An are components of the electro-magnetic 4-potential. By this assumption, (5)
takes a form similar to intervals in Finsler-type theories with field-dependent metrics. For the
reviews on Finsler theories, see for example [18] and references therein.

Using the assumption (12), equation (11) takes the form(ε

c
− I

e

c
ϕ
)

+ Jn

(
pn − I

e

c
An

)
∓ mc = 0, (13)

where ε = mc2/β and pn = mvn/β are energy and momentum of the particle, respectively.
This equation represents one of the zero divisors in the algebra of split octonions. The
importance of zero divisors in physical applications of split algebras was specially noted
in [19].

Equation (13), which we receive from the invariance of the interval (10), is the symbolic
form of the four-dimensional Dirac’s equation. The role of four γ -matrices here is played
by the unit element of split octonions 1 and the three vector-like elements Jn. Instead of the
ordinary complex unit i in (13), the basis element I is used, and the factor β transforms to the
ordinary Lorentz formula if we use the limit h̄ → 0 in definition (8).

4. Maxwell’s equations in vacuum

The octonion that contains the electromagnetic potentials ϕ and An can be written as

A = −ϕ + JnA
n + jnB

n + Ib (n = 1, 2, 3), (14)

where Bn and b correspond to the extra degrees of freedom in the octonionic algebra. Here
we do not specify their meaning; we only want to obtain the approximations leading us to the
classical Maxwell–Heaviside equations that give successful explanation of most experiments
at low energies. Examples of problems in classical electrodynamics where the fields Bn and
b can play a role are magnetic monopoles [20], longitudinal electrodynamic force [21], the
Abraham–Minkowski controversy [22], etc.

To obtain the weak-field approximation in octonionic equations, let us mention that, since
we require positivity of norms, the elements of split octonions should have a hierarchical
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structure. This means that the absolute value of the scalar element should be greater than other
elements and so on. From (3) it is also clear that the pseudo-vector and pseudo-scalar units are
secondary since they are expressed by the fundamental vector-like elements. The appearance
of Planck’s constant in the last two terms of (5) is another indication that in the classical limit
we can neglect the values of pseudo-vector and pseudo-scalar components. So it is natural to
consider that in (14)

|b|, |Bn| � |ϕ|, |An|, (15)

and these components can be neglected. The invariance of octonionic intervals then will
guarantee that this inequality would be preserved for different observers.

The octonionic differential operator can be written as

∇ = 1

c

(
∂

∂t
+ I

1

h̄

∂

∂ω

)
+ J n

(
∂

∂xn
+ I

1

h̄

∂

∂λn

)
. (16)

Here we can also assume that the influence of ω and λn can be ignored in the classical limit.
The norm of ∇ when fields do not depend on ω and λn is the ordinary 4-d’Alembertian.

Assuming in (14) that Bn and b are small (or are constants) and An and ϕ are independent
of ω and λ, we can define the electro-magnetic field in the form

∇A = F =
(

−1

c

∂ϕ

∂t
+

∂An

∂xn

)
+ JnE

n + jnH
n, (n = 1, 2, 3), (17)

where

En = 1

c

∂An

∂t
− ∂ϕ

∂xn

, Hn = εnmk ∂Ak

∂xm
(18)

are components of 3-vectors of electric and magnetic fields, respectively.
Then we can postulate the Lorenz gauge (derived by L Lorenz in 1867, and not by H A

Lorentz, as refereed in some modern papers)

1

c

∂ϕ

∂t
− ∂An

∂xn
= 0, (19)

or the weaker condition where zero in (19) is replaced by a constant, and write the continuity
equation as the product of the octonions (16) and (17),

∇F = ∂En

∂xn
+ Jk

(
1

c

∂Ek

∂t
− εnmk ∂Hm

∂xn

)
+ jk

(
1

c

∂Hk

∂t
+ εnmk ∂Em

∂xn

)
+ I

∂Hn

∂xn
= 0. (20)

Different signs in the second and third terms of this equation are the result of the use of the
algebra (2), in particular

Jnjm = −εnmkJ
k, JnJm = εnmkj

k. (21)

Equating to zero coefficients in front of the four octonionic basis units in (20) results in the
full set of the homogeneous Maxwell’s equations.

We can also write the octonionic current function in the form


 = ρ + Jn

1

c
σn, (22)

where ρ is the electric charge density and σn are the components of the electric current vector.
As before, we ignored pseudo-vector and pseudo-scalar parts in (22).

Finally, we can write the complete set of inhomogeneous Maxwell’s equations as one
single octonionic equation

∇F = 
. (23)
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As it is clear from (20) and (22) in (23), as in standard electrodynamics, the magnetic
current is absent. This is the result of ignoring pseudo-vector and pseudo-scalar terms in (22),
and of re-appearance of these kinds of terms in (20) via octonionic products. Non-associativity
of octonions is mainly governed by jn and I. So the non-existence of magnetic monopoles in
classical electrodynamics can be explained as the use of associativity limit.

5. Conclusion and discussion

In this paper, simple octonionic forms of Dirac’s operator and Maxwell’s equations in vacuum
were derived. In the classical limit, there is no indication of non-associativity for the
electromagnetic field, and the derived octonionic Maxwell’s equation (23) is similar to the bi-
quaternion formulations [2]. However, split octonions that incorporate three vector-like
elements should give a more successful generalization of classical electrodynamics since
non-associativity (which distinguishes octonions from other normed algebras) also exists in
the algebra of Euclidean 3-vectors used in the classical Maxwell–Heaviside equations. The
only new feature of the octonionic formalism in the approximation used in this paper is the
observation that the non-existence of magnetic monopoles in classical electrodynamics is
connected with ignoring non-associativity. In the case of strong fields, the pseudo-vector and
pseudo-scalar parts of octonions cannot be neglected, equations will become more complicated
and we expect to find new effects in future papers.
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